4,919 research outputs found

    Scene Coordinate Regression with Angle-Based Reprojection Loss for Camera Relocalization

    Get PDF
    Image-based camera relocalization is an important problem in computer vision and robotics. Recent works utilize convolutional neural networks (CNNs) to regress for pixels in a query image their corresponding 3D world coordinates in the scene. The final pose is then solved via a RANSAC-based optimization scheme using the predicted coordinates. Usually, the CNN is trained with ground truth scene coordinates, but it has also been shown that the network can discover 3D scene geometry automatically by minimizing single-view reprojection loss. However, due to the deficiencies of the reprojection loss, the network needs to be carefully initialized. In this paper, we present a new angle-based reprojection loss, which resolves the issues of the original reprojection loss. With this new loss function, the network can be trained without careful initialization, and the system achieves more accurate results. The new loss also enables us to utilize available multi-view constraints, which further improve performance.Comment: ECCV 2018 Workshop (Geometry Meets Deep Learning

    What about Plurality? Aristotle’s Discussion of Zeno’s Paradoxes

    Get PDF
    While Aristotle provides the crucial testimonies for the paradoxes of motion, topos, and the falling millet seed, surprisingly he shows almost no interest in the paradoxes of plurality. For Plato, by contrast, the plurality paradoxes seem to be the central paradoxes of Zeno and Simplicius is our primary source for those. This paper investigates why the plurality paradoxes are not examined by Aristotle and argues that a close look at the context in which Aristotle discusses Zeno holds the answer to this question

    An Analysis of the Effects of Low Energy Electron Radiation of Al\u3csub\u3ex\u3c/sub\u3eGa\u3csub\u3e1-x\u3c/sub\u3eN/GaN Modulation-Doped Field-Effect Transistors

    Get PDF
    The effects of radiation on AlxGa1-xN/GaN MODFETs is an area of increasing interest to the USAF as these devices become developed and integrated in satellite-based systems Irradiation is also a valuable tool for analyzing the quantum-level characteristics and properties that are responsible for device operation AlxGa1-xN/GaN MODFETs were fabricated and irradiated at liquid nitrogen temperatures by 0,45-1,2MeV electrons up to doses of 6*1016 e/cm2. Following irradiation, low temperature I-V measurements were recorded providing dose-dependent measurements Temperature-dependent I-V measurements were also made during room temperature annealing following irradiation I-V measurements indicate radiation-induced changes occur in these devices creating increased gate and drain currents These increased currents are only maintained at low temperatures (T \u3c 300 K), It is believed that the increase in gate current is caused by an increase in the electron trap concentration of the AlxGa1-xN/GaN layer, This increase in trap concentration directly increases the trap-assisted tunneling current resulting in the observed increase in gate current The mechanism causing the increase in drain current is unknown, Several theories explaining this increase are presented along with the additional research necessary to illuminate the correct theory, This is the first experiment involving electron radiation of AlxGa1-xN/GaN MODFETs

    Engineered Surfaces to Control Secondary Electron Yield for Multipactor Suppression

    Get PDF
    A significant problem for satellites, vacuum electron devices, and particle accelerators is multipactor: an avalanche of electrons caused by recurring secondary electron emission (SEE) in a time-varying electric field. The consequences of multipactor range from temporary to permanent device failure. This research studied how surface topography can be engineered to minimize SEE and suppress multipactor. Two new semi-empirical models (one based on a 2D pore, the other based on a 3D pore) were developed to predict the secondary electron yield (SEY) of a porous surface based on pore aspect ratio and porosity. The models were validated with experimental SEY measurements of microporous gold surfaces. The more accurate 3D model predicts that a porous gold surface with pore aspect ratios = 2.0 and porosity = 0.5 will control the maximum SEY to near unity, providing a multipactor-resistant surface. Both the SEY models and experimental results confirm the understanding that the ability of a porous surface to control SEY is not dependent on pore size

    Engineered surfaces to control secondary electron emission for multipactor suppression

    Get PDF
    A significant problem for space-based systems is multipactor - an avalanche of electrons caused by repeated secondary electron emission (SEE). The consequences of multipactor range from altering the operation of radio frequency (RF) devices to permanent device damage. Existing efforts to suppress multipactor rely heavily on limiting power levels below a multipactor threshold [1]. This research applies surface micromachining techniques to create porous surfaces to control the secondary electron yield (SEY) of a material for multipactor suppression. Surface characteristics of interest include pore aspect ratio and density. A discussion is provided on the advantage of using electroplating (vice etching) to create porous surfaces for studying the relationships between SEY and pore aspect ratio & density (i.e. porosity). Preventing multipactor through SEY reduction will allow power level restrictions to be eased, leading to more powerful and capable space-based systems

    Hybrid Sensible/Thermochemical Solar Energy Storage Concepts Based on Porous Ceramic Structures and Redox Pair Oxides Chemistry

    Get PDF
    AbstractThe enthalpy effects of reversible chemical reactions can be exploited for the so-called thermochemical storage of solar energy. Oxides of multivalent metals in particular, capable of being reduced and oxidized under air atmosphere with significant heat effects are perfect candidates for air-operated Concentrated Solar Power plants since in this case air can be used as both the heat transfer fluid and the reactant (O2) and therefore can come to direct contact with the storage material (oxide).Based on the characteristics of the oxide redox pair Co3O4/CoO as a thermochemical heat storage medium and the advantages of porous ceramic structures like honeycombs and foams in heat exchange applications, the idea of employing such structures either coated with or entirely made of a redox material like Co3O4, as a hybrid sensible-thermochemical solar energy storage system in air-operated Concentrated Solar Power plants has been set forth and tested. At first, small-scale, redox-inert, cordierite foams and honeycombs were coated with Co3O4 and tested for cyclic reduction-oxidation operation via Thermo-Gravimetric Analysis. Such Co3O4-coated supports exhibited repeatable operation within the temperature range 800-1000oC for many cycles, employing all the redox material incorporated, even at very high redox oxide loading levels. To improve the volumetric heat storage capacity of such reactors, ceramic foams made entirely of Co3O4 were manufactured. Such foams exhibited satisfactory structural integrity and were comparatively tested vs. the “plain” Co3O4 powder and the Co3O4-coated, cordierite supports under the same cyclic redox conditions up to 15 consecutive cycles. The Co3O4-made porous foams were proved also capable of cyclic reduction–oxidation, exploiting the entire amount of Co3O4 used in their manufacture, maintaining simultaneously their structural integrity

    Modeling Micro-Porous Surfaces for Secondary Electron Emission Control to Suppress Multipactor

    Get PDF
    This work seeks to understand how the topography of a surface can be engineered to control secondary electron emission (SEE) for multipactor suppression. Two unique, semi-empirical models for the secondary electron yield (SEY) of a micro-porous surface are derived and compared. The first model is based on a two-dimensional (2D) pore geometry. The second model is based on a three-dimensional (3D) pore geometry. The SEY of both models is shown to depend on two categories of surface parameters: chemistry and topography. An important parameter in these models is the probability of electron emissions to escape the surface pores. This probability is shown by both models to depend exclusively on the aspect ratio of the pore (the ratio of the pore height to the pore diameter). The increased accuracy of the 3D model (compared to the 2D model) results in lower electron escape probabilities with the greatest reductions occurring for aspect ratios less than two. In order to validate these models, a variety of micro-porous gold surfaces were designed and fabricated using photolithography and electroplating processes. The use of an additive metal-deposition process (instead of the more commonly used subtractive metal-etch process) provided geometrically ideal pores which were necessary to accurately assess the 2D and 3D models. Comparison of the experimentally measured SEY data with model predictions from both the 2D and 3D models illustrates the improved accuracy of the 3D model. For a micro-porous gold surface consisting of pores with aspect ratios of two and a 50% pore density, the 3D model predicts that the maximum total SEY will be one. This provides optimal engineered surface design objectives to pursue for multipactor suppression using gold surfaces

    High-Definition Optical Coherence Tomography for the in vivo Detection of Demodex Mites

    Get PDF
    Background: Demodex mites are involved in different skin diseases and are commonly detected by skin scrape tests or superficial biopsies. A new high-definition optical coherence tomography (HD-OCT) with high lateral and axial resolution in a horizontal (en-face) and vertical (slice) imaging mode might offer the possibility of noninvasive and fast in vivo examination of demodex mites. Methods: Twenty patients with demodex-related skin diseases and 20 age- and gender-matched healthy controls were examined by HD-OCT. Mites per follicle and follicles per field of view were counted and compared to skin scrape tests. Results: HD-OCT images depicted mites in the en-face mode as bright round dots in groups of 3-5 mites per hair follicle. In the patients with demodex-related disease, a mean number of 3.4 mites per follicle were detected with a mean number of 2.9 infested follicles per area of view compared to a mean of 0.6 mites in 0.4 infested follicles in the controls. The skin scrape tests were negative in 21% of the patients. Conclusion: The innovative HD-OCT enables fast and noninvasive in vivo recognition of demodex mites and might become a useful tool in the diagnosis and treatment monitoring of demodex-related skin diseases. Copyright (C) 2012 S. Karger AG, Base

    Critical Kauffman networks under deterministic asynchronous update

    Full text link
    We investigate the influence of a deterministic but non-synchronous update on Random Boolean Networks, with a focus on critical networks. Knowing that ``relevant components'' determine the number and length of attractors, we focus on such relevant components and calculate how the length and number of attractors on these components are modified by delays at one or more nodes. The main findings are that attractors decrease in number when there are more delays, and that periods may become very long when delays are not integer multiples of the basic update step.Comment: 8 pages, 3 figures, submitted to a journa
    corecore